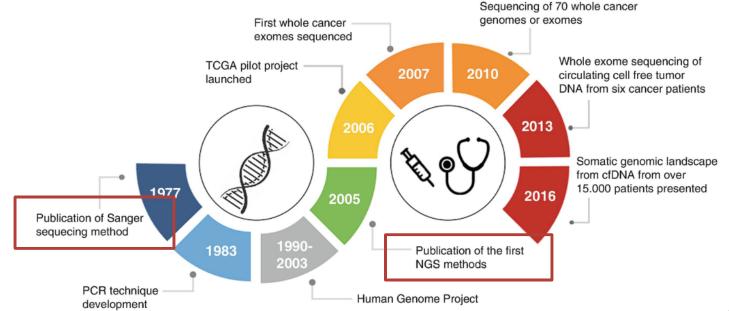
UNIVERSITY OF BERGEN

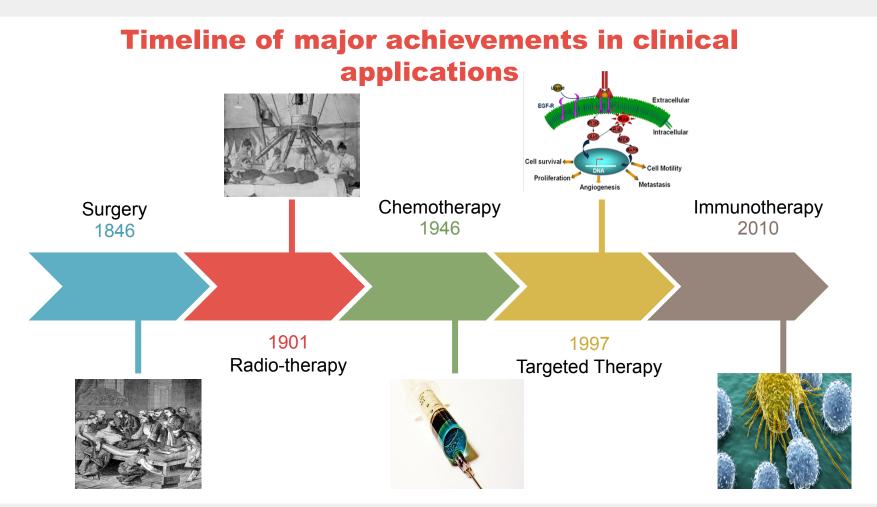
Andreas Venizelos Trial lecture

Next-generation sequencing in the clinic Possibilities and challenges for cancer diagnosis and therapy UNIVERSITY OF BERGEN



Contents

- What is Next Generation Sequencing (NGS)
 - NGS workflow
 - Technologies
 - Methodology
 - Bioinformatics workflow
- Possibilities of NGS in Cancer Diagnosis
- Possibilities of NGS in Cancer Therapy
- Challenges for Cancer Diagnosis and Cancer Therapy with NGS



Timeline of major achievements in sequencing technologies

Morganti et al. (2019) P5 eHealth: An Agenda for the Health Technologies of the Future pp 125-154

Modified by Venizelos, ECPC, Brussels (2015)

What's so "Next Generation" about it?

Sanger Sequencing

Maxam and Gilbert

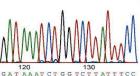
Sanger Chain-termination

- Infer nucleotide identity using dNTPs

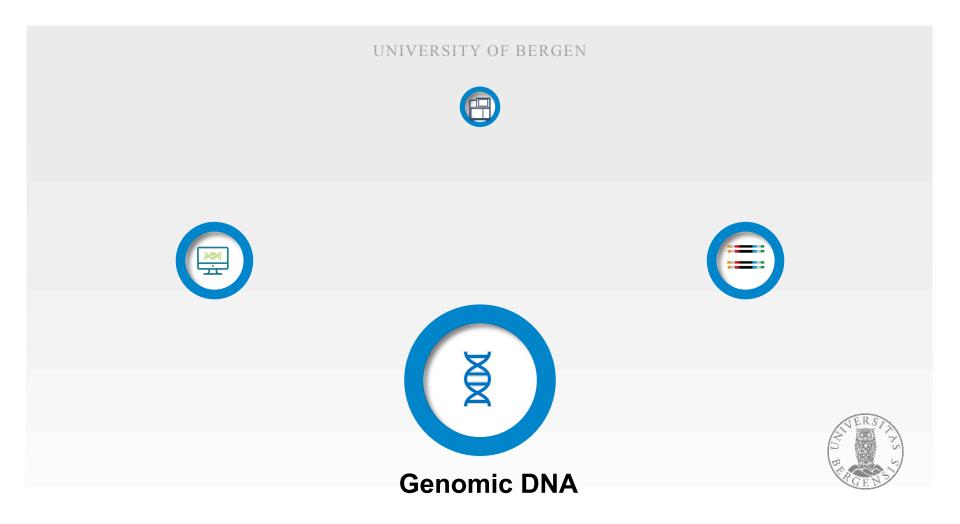
then visualize with electrophoresis

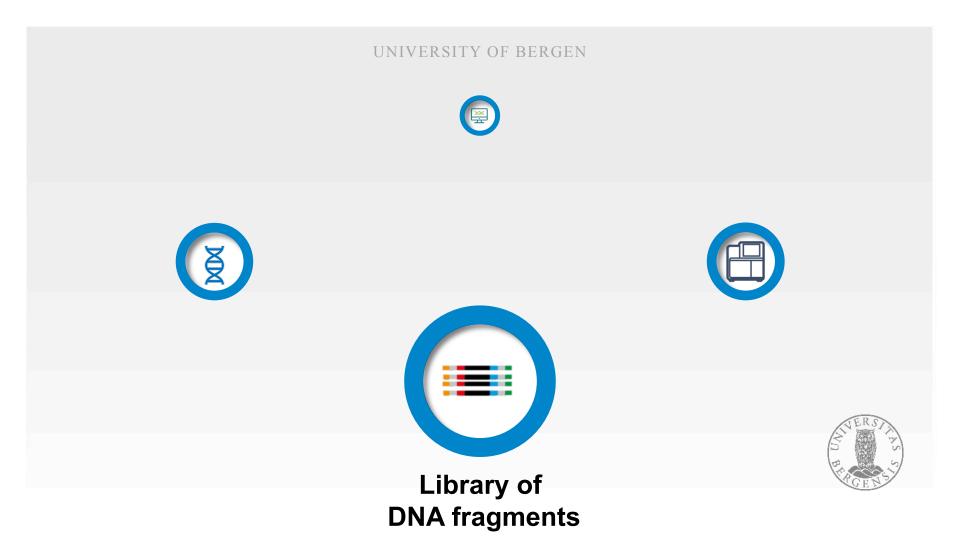
500-1000 bp fragments

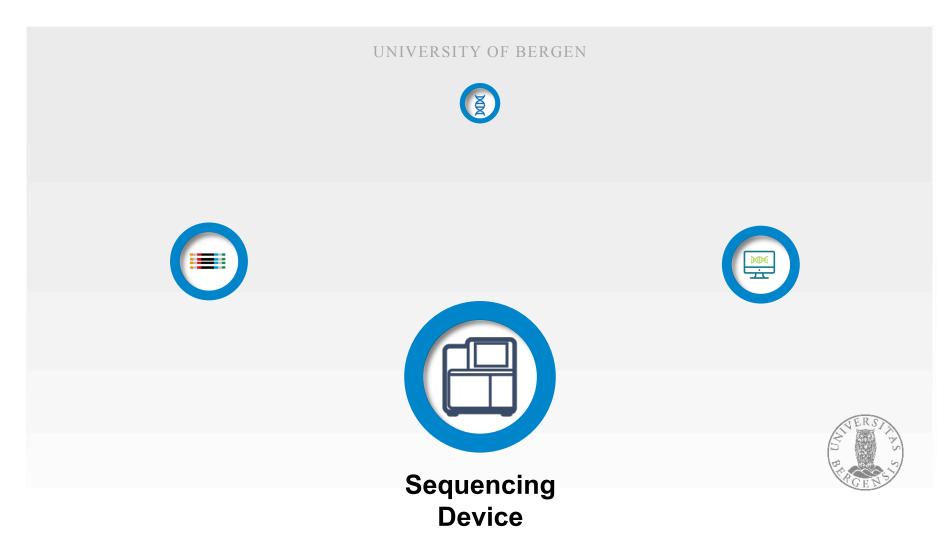
and a second

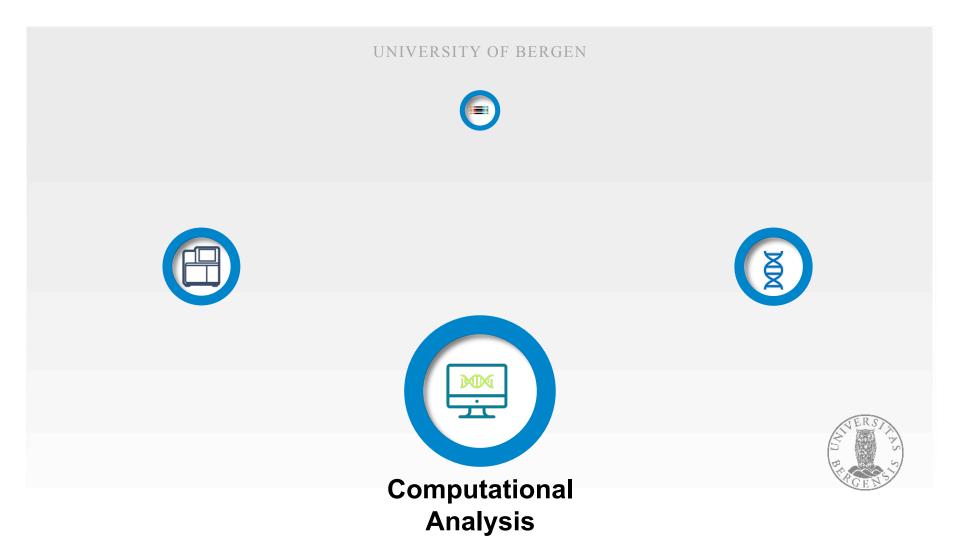

454, Solexa, Ion Torrent Illumina

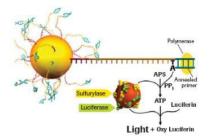
- High throughput from the parallelization of sequencing reactions
- ~50-500 bp fragments





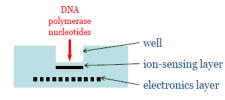

NGS follow a general sequencing workflow

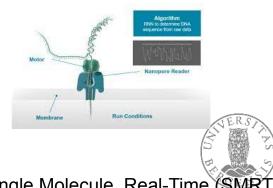




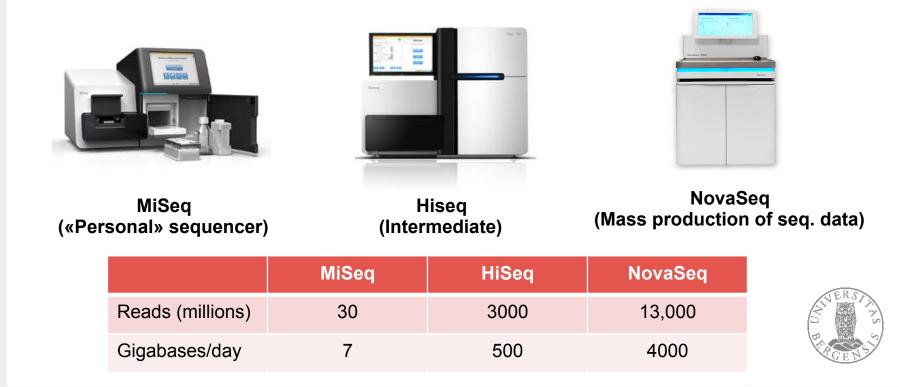
NGS technologies

Roche "454 / Pyroseq."

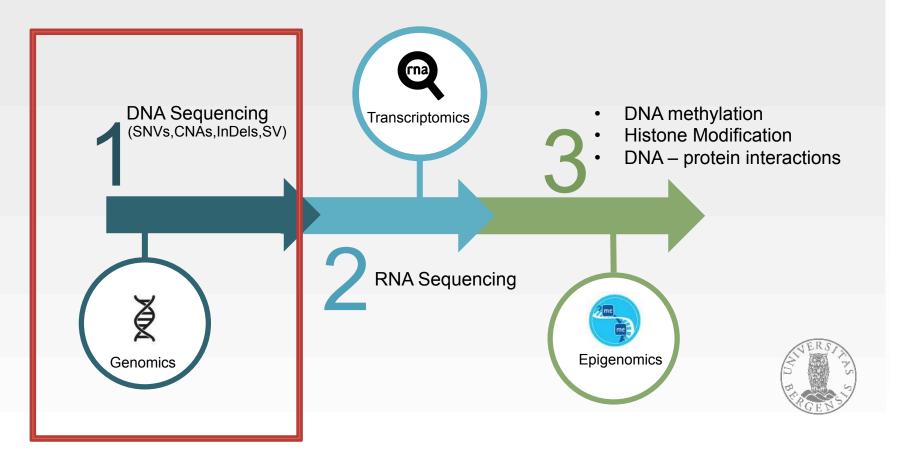



Ion Torrent "PGM"

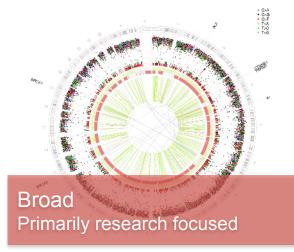
Oxford-Nanopore "MinION"



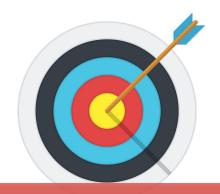
Luciferase


Ion-sensing (pH)

Single Molecule, Real-Time (SMRT)


Market leader: Illumina Solexa technology

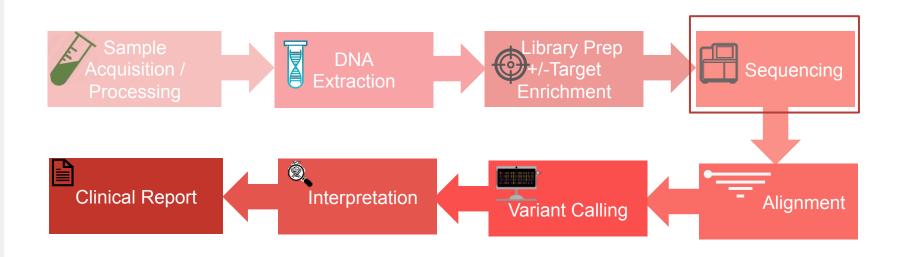
NGS methods in Cancer

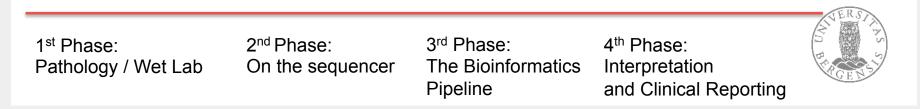


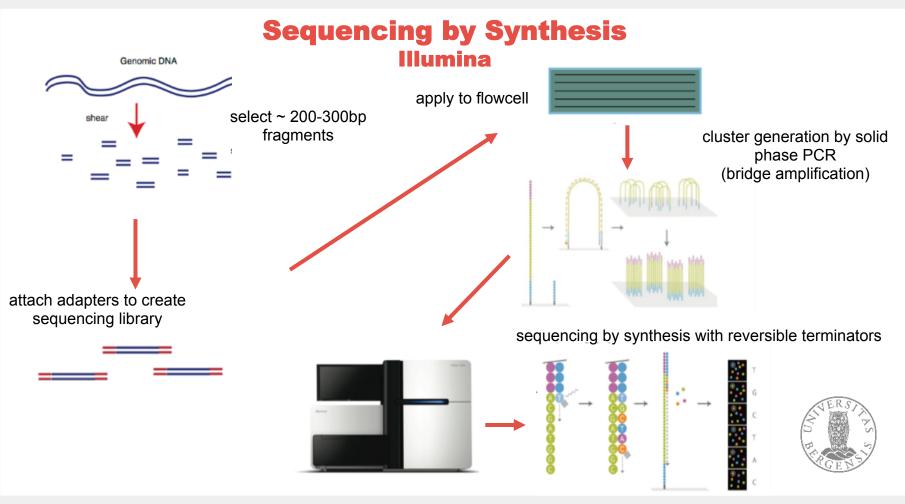
Sequencing for genetic biomarkers

Whole Genome / Exome

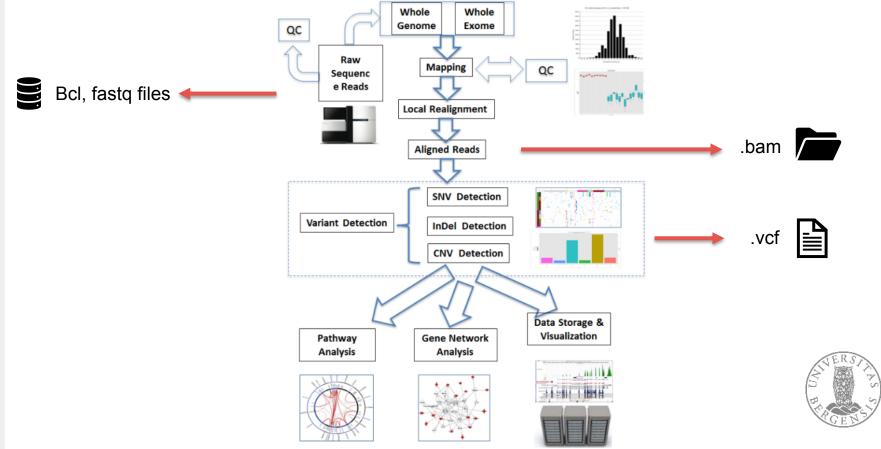
- Well suited for discovery applications
- Unbiased approach (WGS) extensive information
- Greater breadth of information is sampled at lower coverage which can limit detection sensitivity


Targeted Primarily clinical used


Selected Genes / Targeted Enrichment


- Ideal for well-defined use cases
- Higher coverage of regions of interest
- Deeper sequencing improve sensitivity of calling rare variants

NGS sequencing workflow (Illumina)



https://www.illumina.com/

Bioinformatics pipeline

https://genome-hubcam.wordpress.com/

Possibilities of NGS in Cancer Diagnosis

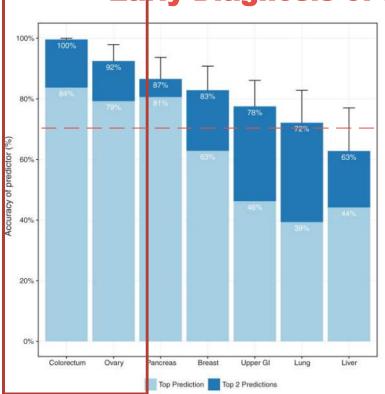
Biomarkers in Cancer

Non-NGS Biomarkers for diagnosis


- PSA (Prostate cancer)
- CEA (Colorectal cancer)
- Endocrine markers (synaptophysin, chromogranin)
- Proliferation markers (Ki-67)

Potential NGS based Biomarkers for diagnosis

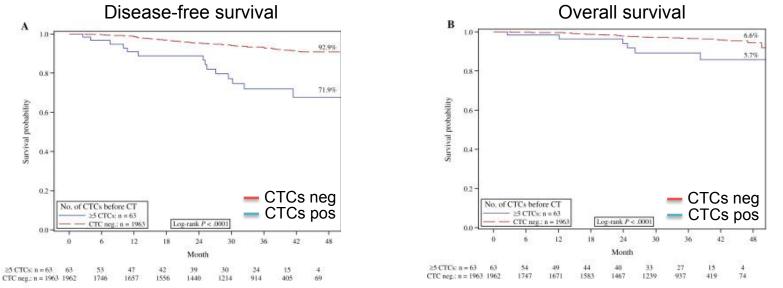
- CTCs, ctDNA
- Mutational Signatures


Liquid Biopsies Classification

De Michino et.al.; International Journal of Radiation Oncology Biology Physics (2020)

Liquid Biopsies __Early Diagnosis of Primary Disease?

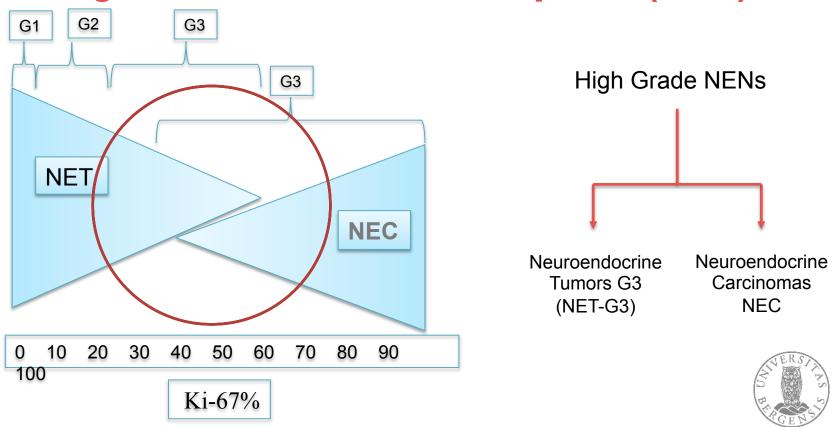
1005 individuals with non metastatic cancer


CancerSEEK panel 16 cancer-related genes from ctDNA

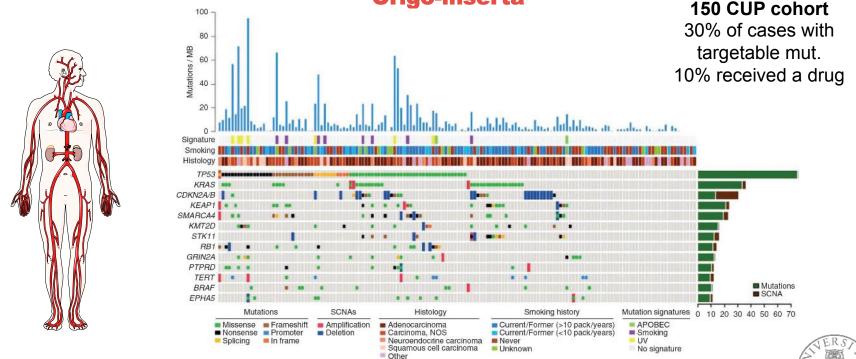
Median sensitivity 70% and Specificity over >99%

Cohen et.al.; Science (2018)

Liquid Biopsies Early Detection of Relapse?



2026 women with early breast cancer (EBC)

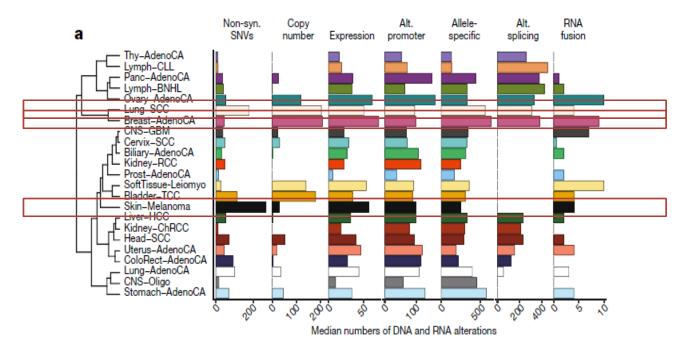

Rack et.al.; JNCI (2014)

High Grade Neuroendocrine Neoplasms (NENs)

Sorbye et al., Endocrinol Metab Clin North Am. (2018)

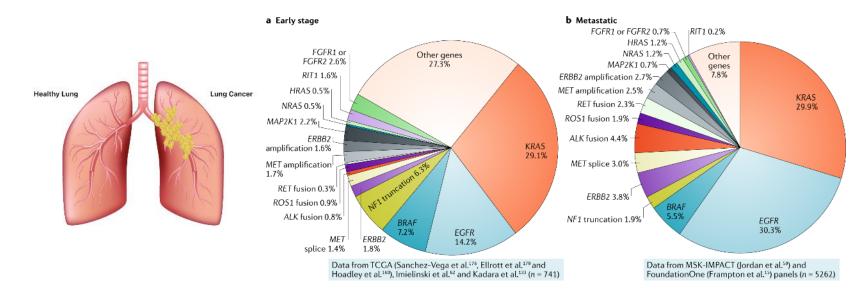
Carcinoma of Unknown Primary Site (CUP) Origo-inserta

3 – 5% of all malignancies with dismal prognosis (median OS of 9 months)


Massard et al. Nature Reviews Clinical Oncology (2011) Varghese et.al. Annals of Oncology (2017)

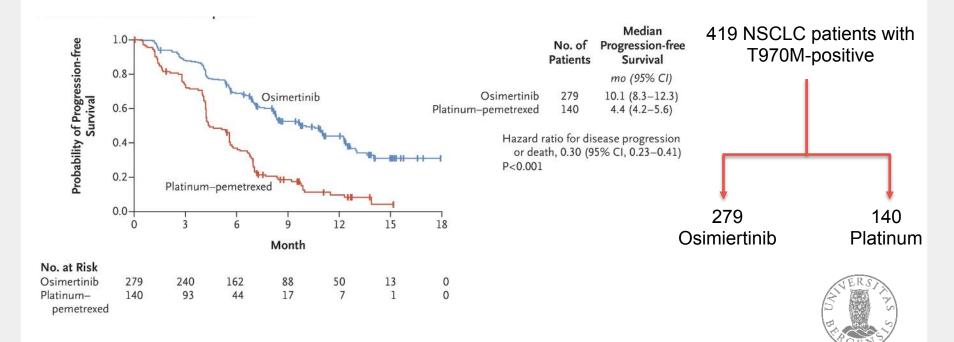
Possibilities of NGS in Cancer Therapy

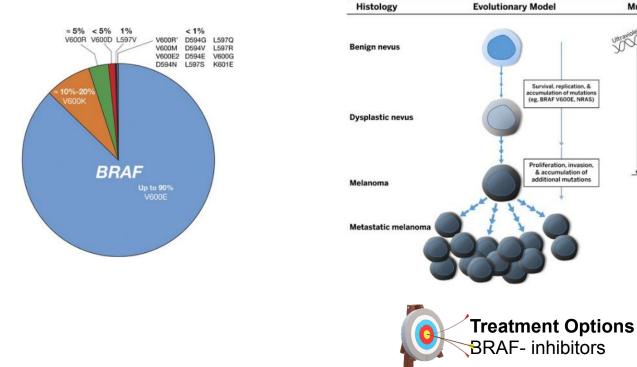
NGS in Cancer Genomics


Types of Alterations in Different Cancer Types

PCAWG, Nature (2020)

Non-small-cell lung cancer (NSCLC)

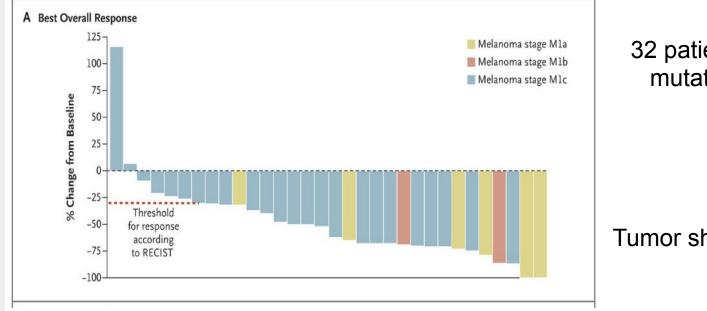

Established targets: EGFR, ALK, ROS-1, BRAF Emergent target: MET, RET, NTRK, HER2, PI3KCA Elusive targets: KRAS, TP53


Swanton et.al.; Annals of Oncology (2016) Skoulidis e.al.; Nature Reviews (2019)

The AURA 3 trial - NSCLC

Mok et al. New England Journal of Medicine (2017)

Metastatic Melanoma

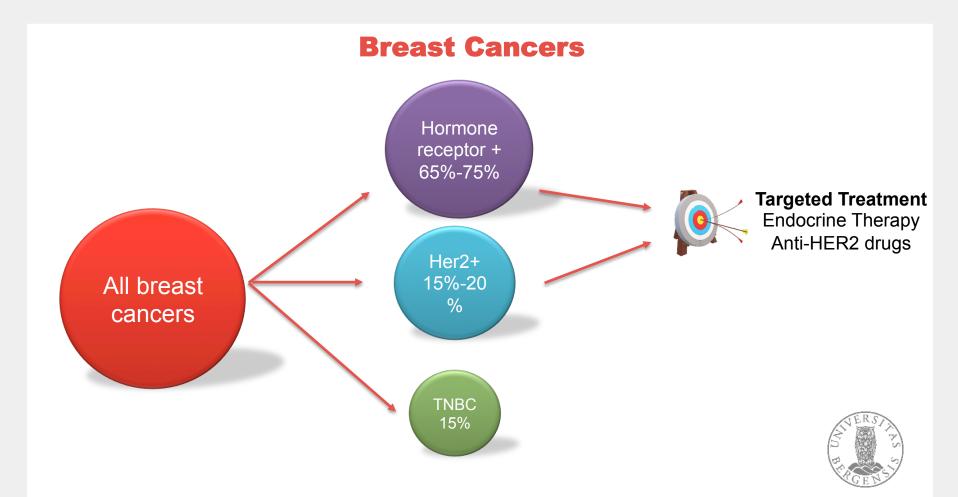

Mutation Signature

. .

Copy Numbers Point Variations Mutations

Cheng et.al.; Modern Pathology (2017)

Metastatic Melanoma – BRAF inhibitors



32 patients with BRAF mutations (V600E)

Tumor shrinkage by > 30%

Flaherty et.al.; New England Journal of Medicine (2010)

Bockstal et.al.; Molecular Oncology (2020) Masoud and Pages; World J Clin Oncol. (2017)

Genes enriched for mutations in metastasis/relapse Breast Cancer

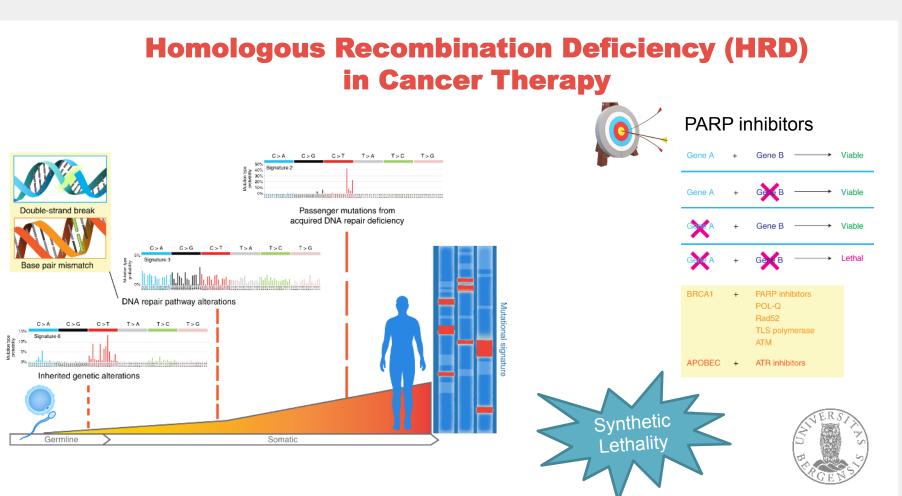
Primary	Metastasis
ESR1 ** SIAI3 * ARID18 AKT1 *** JAK2 ARID1A ** BRCA1 * BRCA1 * FOXA1 TP53 *** PIK3R1 PTEN RUNX1 NCOR1 TBX3 RB1 ERBB2 GATA3 CDH1 FOXA1 TPK3CA MAP2K4 MAP3K1 T	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
MLL3	0.63 [0.24, 1.44]
0.1 1 10 100 Odds ratio	1000

Yates, Knappskog et al. Cancer Cell (2017)

PALOMA3 trial – metastatic Breast Cancer

	Fulvestrant plus palbociclib (events [n]/ patients)	Fulvestrant plus placebo (events [n]/ patients)				Fulvestrant plus palbociclib median progression-free survival (95%CI)	Fulvestrant plus placebo median progression-free survival (95%CI)	Hazard ratio (95% CI)	Pinteraction
Menopausal status at study entry									0.89
Premenopausal or perimenopausa	30/72	23/36	53/108	_		9·5 (7·4-NE)	5-6 (1-8-7-6)	0-50 (0-29-0-87)	
Postmenopausal	115/275	91/138	206/413			9.9 (8.5-11.0)	3-9 (3-5-5-5)	0.45 (0.34-0.59)	
Site of metastatic disease				-					0-82
Visceral	101/206	76/105	177/311			8-0 (7-5-9-5)	3-5 (2-0-5-3)	0-47 (0-34-0-63)	
Non-visceral	44/141	38/69	82/210			11-2 (9-9-NE)	5-6 (4-6-10-9)	0.43 (0.28-0.67)	
Number of disease sites									0-43
1	36/111	29/60	65/171	_		11-2 (9-9-NE)	9-3 (5-5-NE)	0.55 (0.34-0.90)	
2	40/95	36/51	76/146			11-0 (7-5-NE)	3-6 (1-9-5-6)	0.37 (0.24-0.59)	
≥3	69/139	49/62	118/201			7.6 (7.4-9.5)	3-4 (1-9-3-7)	0.40 (0.28-0.59)	
Disease-free interval				_					0.16
≤24 months	24/41	15/22	39/63			7.2 (2.5-9.2)	5-4 (1-8-9-3)	0.83 (0.43-1.59)	
>24 months	77/192	63/101	140/293			9.9 (9.3-11.2)	5-5 (3-5-7-3)	0.48 (0.35-0.68)	
Previous lines of endocrine therapy				_					0.75
1	63/160	58/91	121/251	- 		9·5 (7·6-NE)	4.6 (3.4-5.6)	0-42 (0-29-0-60)	
2	61/140	44/61	105/201			9.9 (7.5-13.9)	5-1 (2-8-7-2)	0.46 (0.31-0.69)	
≥3	21/47	12/22	33/69	_		9·4 (7·5-NE)	3-9 (1-8-NE)	0.61 (0.30-1.24)	
Previous endocrine therapy									0.63
Aromatase inhibitor only	58/137	50/70	108/207			9.5 (7.6-13.9)	3-7 (2-1-5-5)	0.39 (0.27-0.57)	
Tamoxifen only	18/51	10/23	28/74			9-5 (7-5-NE)	NE (1-7-NE)	0.61 (0.28-1.33)	
Aromatase inhibitor and tamoxife	69/159	54/81	123/240	_ _		9.5 (7.6-11.2)	4-2 (3-5-7-2)	0.50 (0.35-0.71)	
Sensitivity to previous hormonal the	ару			_					0.13
Yes	108/274	89/136	197/410			10-2 (9-4-11-2)	4-2 (3-5-5-6)	0-42 (0-32-0-56)	
No	37/73	25/38	62/111			7.4 (5.6-9.2)	5.4 (1.9-7.4)	0.64 (0.39-1.07)	
The purpose of most recent therapy									0-39
Neoadjuvant or adjuvant treatme	34/74	24/40	58/114	_ _		9-5 (7-4-NE)	5-4 (2-1-10-9)	0.55 (0.32-0.92)	
Metastatic treatment	111/273	90/133	201/406			9.9 (9.2-11.2)	3-9 (3-5-5-6)	0.43 (0.32-0.57)	
Previous chemotherapy				-					0-22
Neoadjuvant or adjuvant treatme	tonly 59/139	43/74	102/213			11-0 (7-6-NE)	5-6 (3-5-9-3)	0.60 (0.40-0.88)	
Metastatic treatment	53/113	47/64	100/177	_		7.7 (5.7-9.5)	3.5 (1.9-5.4)	0-43 (0-29-0-64)	
None	33/95	24/36	57/131			10-8 (9-5-NE)	5-4 (3-4-7-3)	0-31 (0-18-0-53)	
PIK3CA status									0.83
Positive	41/85	31/44	72/129	_		9.5 (5.7-11.2)	3-6 (1-9-5-6)	0.48 (0.30-0.78)	
Negative	71/180	56/86	127/266			9-9 (9-2-13-9)	4.6 (3.4-7.3)	0.45 (0.31-0.64)	
Overall	145/347	114/174	259/521	-		9-5 (9-2-11-0)	4-6 (3-5-5-6)	0-46 (0-36-0-59)	
			0.12	←	→	8.0			
					s fulvestrant s placebo				

Cristofanilli et al. The Lancet Oncology (2016)


Biomarkers for Cancer Therapy

Homologous recombination deficiency (HRD)

HER2 amplification / Trastuzumab in BC EGFR mut / EGFR TKI in NSCLC BRAF mut in melanoma

Morganti et al. (2019) P5 eHealth: An Agenda for the Health Technologies of the Future pp 125-154

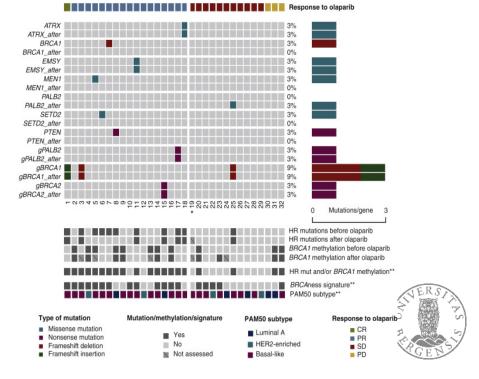
Jennifer Ma et.al.; Nature Communications (2018)

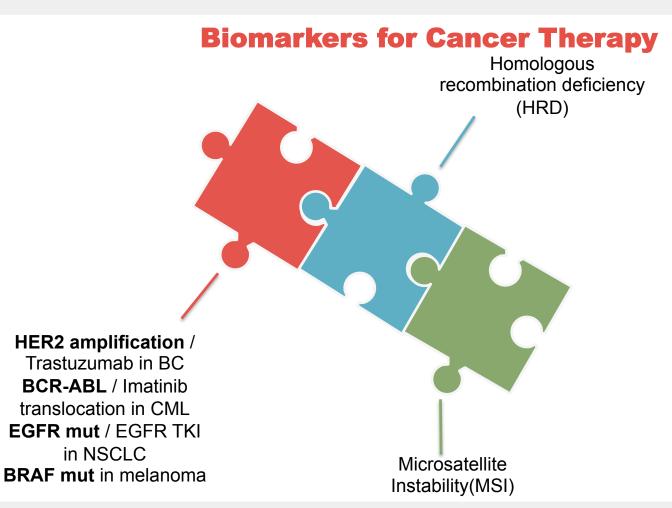
Homologous recombination deficiency (HRD) in cancer th<u>erapy</u>

302 patients Metastatic Breast Cancer germline BRCA mutation

Subgroup	Olaparib	Standard Therapy		Hazard Rat	io (95% Cl)		
	no. of patients with	events/total no. (%)					
All patients	163/205 (79.5)	71/97 (73.2)		-0-			0.58 (0.43-0.80
Previous chemotherapy for metastatic breast cancer							
Yes	119/146 (81.5)	51/69 (73.9)			- 1		0.65 (0.47-0.9)
No	44/59 (74.6)	20/28 (71.4)	3. 	•			0.56 (0.34-0.98
Hormone-receptor status							
Hormone-receptor positive	82/103 (79.6)	31/49 (63.3)			<u>→</u>		0.82 (0.55-1.26
Triple negative	81/102 (79.4)	40/48 (83.3)					0.43 (0.29-0.63
Previous platinum-based therapy for breast ca	ncer						
Yes	50/60 (83.3)	21/26 (80.8)	3	•			0.67 (0.41-1.14
No	113/145 (77.9)	50/71 (70.4)			•		0.60 (0.43-0.84
Measurable disease							
Yes	139/165 (84.2)	56/72 (77.8)			1		0.58 (0.43-0.80
No	24/40 (60.0)	15/25 (60.0)	-	•			0.57 (0.30-1.12
Progressive disease at the time of randomization							
Yes	127/159 (79.9)	53/73 (72.6)					0.60 (0.43-0.83
No	36/46 (78.3)	18/24 (75.0)	1	•			0.72 (0.41-1.30
BRCA mutation type							
BRCA1	94/114 (82.5)	41/50 (82.0)	17 <u>7</u>	•			0.54 (0.37-0.79
BRCA2	64/84 (76.2)	30/45 (66.7)					0.68 (0.45-1.03
Age							
<65 yr	154/194 (79.4)	67/93 (72.0)		-0-	- 1		0.66 (0.49-0.88
≥65 yr	9/11 (81.8)	4/4 (100.0)					Not calculated
Region							
Asia	46/59 (78.0)	21/28 (75.0)		•			0.57 (0.34-0.92
Europe	77/97 (79.4)	34/35 (75.6)					0.71 (0.48-1.08
North America and South America	40/49 (81.6)	16/24 (66.7)			1		0.39 (0.22-0.73
Race							
White	109/134 (81.3)	47/63 (74.6)					0.67 (0.48-0.95
Other	54/71 (76.1)	24/34 (70.6)			•		0.51 (0.32-0.85
		0.125	0.250	0.500	1.000	2.000	
			Olaparib Better		Standa Thera		

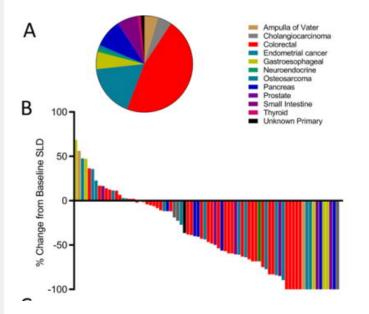
Robson et.al.; New England Journal of Medicine (2017)


Homologous recombination deficiency (HRD) in cancer therapy


PETREMAC TRIAL

32 TNBC patients and 360 gene panel

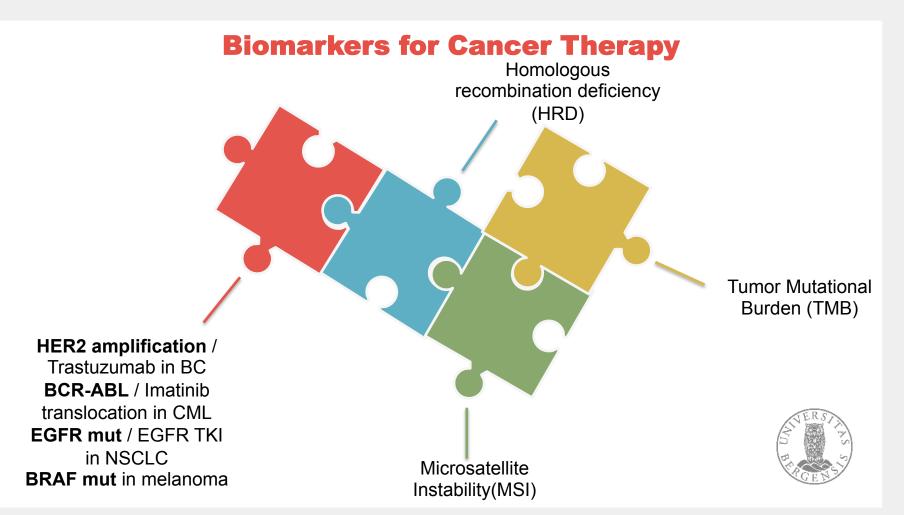
Treatment naïve TNBC yielded response rate 51.9%



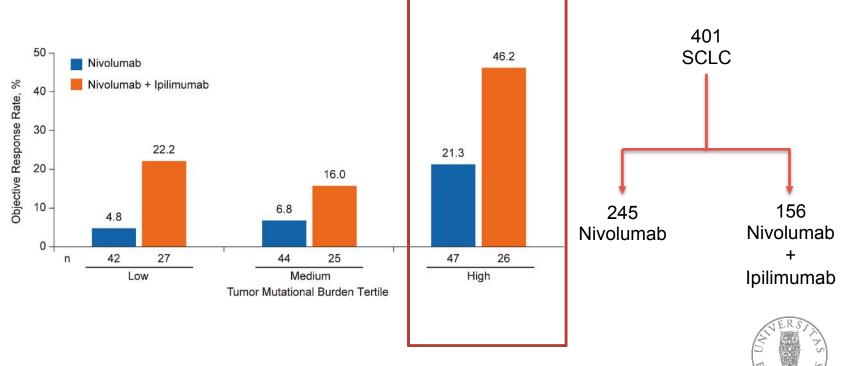
Morganti et al. (2019) P5 eHealth: An Agenda for the Health Technologies of the Future pp 125-154

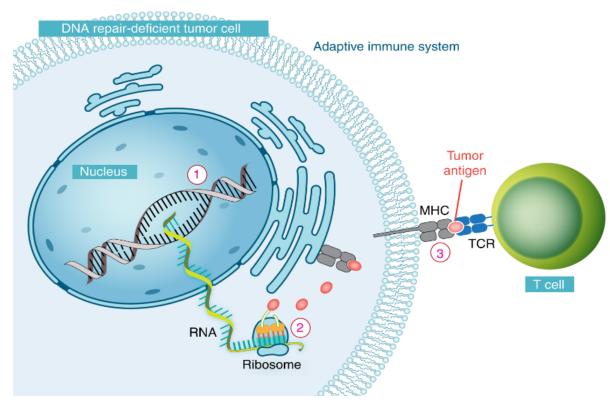
Microsatellite Instability (MSI) in Cancer Therapy

86 patients with MSI evidence


46% with Lynch syndrome

Predict a good response to Checkpoint inhibitors


Mutation of MMR genes (e.g., MLH1, MSH2, MSH3, MSH6, and PMS2).

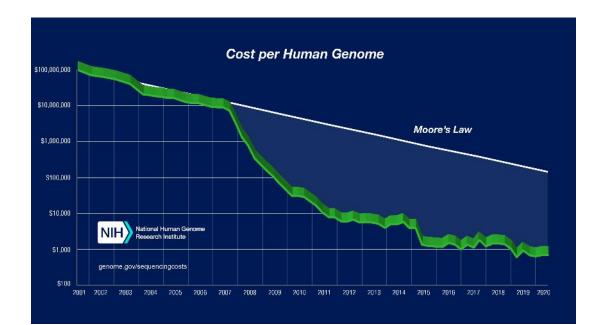


Morganti et al. (2019) P5 eHealth: An Agenda for the Health Technologies of the Future pp 125-154

TMB (Tumor Mutational Burden) in Cancer <u>Therapy</u>

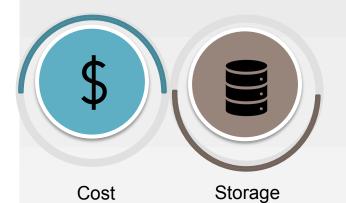
TMB (Tumor Mutational Burden) The neoantigen hypothesis

Challenges for use of NGS in cancer diagnosis and therapy



Cost

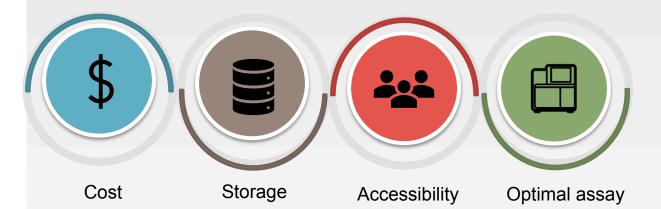
Sequencing Cost



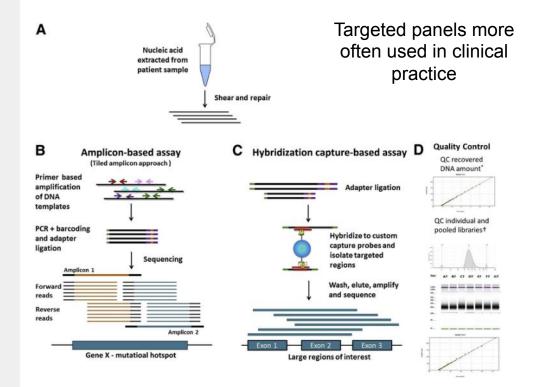
Cost of enrichment vs. Cost of sequencing

If we enrich, We need high efficiency

https://www.genome.gov/


NovaSeq-High Capacity Sequencer

Whole Genome Sequencing


60x for Tumour Samples 30x for Matched Normal

Optimal next generation sequencing assay

Designing a cancer panel-Databases

Jennings et al. The Journal of Molecular Diagnostics (2017)

"France Medecine Genomiques 2025" (

https://www.gouvernement.fr/)

"100k Genomes Project from UK" (https:// www.genomicsengland.co.uk/the-100000-genomes-project/

NGS Clinical Challenges

Clinical context and origin of the tumor in targeted therapies

TNM staging

Differentiation grade based on morphology (Ki67)

> Translocations limited to WGS Fusions RNA seq

Perfomance status of the patient and commorbitities

Clinical trials need to accept smaller patient cohorts

ğ

Take home message

- NGS has paved the way for potential new biomarkers in cancer diagnosis and treatment
- Many potential applications of liquid biopsies are object of ongoing clinical trials including early detection of cancer
- Mutational signatures facilitate the identification of the origin of the tumour
- NGS also has improved the distinction between driver mutations and passenger mutations in order to apply those driver mutations as biomarker for targeted therapies
- WES and WGS with the aid of mutational signatures have paved the way for a more advanced set of biomarkers (HRD and TMB)

• It is necessary to acknowledge both operational and clinical challenges

uib.no